In computer science, the Floyd – Warshall algorithm (also known as Floyd's algorithm, the Roy – Warshall algorithm, the Roy – Floyd algorithm, or the WFI algorithm) is an algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles).A individual execution of the algorithm will find the lengths (summed weights) of shortest paths between all pairs of vertices.

COMING SOON!

```
//
// Floyd Warshall algorithm implementation in C++
//
// The All ▲lgorithms Project
//
// https://allalgorithms.com/graphs/
// https://github.com/allalgorithms/cpp
//
// Contributed by: Nikunj Taneja
// Github: @underscoreorcus
//
#include<cstdio>
#define V 4 // Number of vertices in the graph
#define INF 1e7
void printSolution(int dist[][V]);
void floydWarshall (int graph[][V])
{
int dist[V][V], i, j, k;
/* Initialize the solution matrix same as input graph matrix. Or
we can say the initial values of shortest distances are based
on shortest paths considering no intermediate vertex. */
for (i = 0; i < V; i++)
for (j = 0; j < V; j++)
dist[i][j] = graph[i][j];
/* Add all vertices one by one to the set of intermediate vertices.
---> Before start of an iteration, we have shortest distances between all
pairs of vertices such that the shortest distances consider only the
vertices in set {0, 1, 2, .. k-1} as intermediate vertices.
----> After the end of an iteration, vertex no. k is added to the set of
intermediate vertices and the set becomes {0, 1, 2, .. k} */
for (k = 0; k < V; k++)
{
// Pick all vertices as source one by one
for (i = 0; i < V; i++)
{
// Pick all vertices as destination for the
// above picked source
for (j = 0; j < V; j++)
{
// If vertex k is on the shortest path from
// i to j, then update the value of dist[i][j]
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
// Print the shortest distance matrix
printSolution(dist);
}
void printSolution(int dist[][V])
{
printf ("The following matrix shows the shortest distances"
" between every pair of vertices \n");
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (dist[i][j] == INF)
printf("%7s", "INF");
else
printf ("%7d", dist[i][j]);
}
printf("\n");
}
}
int main()
{
// Sample graph
int graph[V][V] = { {0, 5, INF, 10},
{INF, 0, 3, INF},
{INF, INF, 0, 1},
{INF, INF, INF, 0}
};
floydWarshall(graph);
return 0;
}
```