Ukkonen Suffix Tree Algorithm

In computer science, a suffix tree (also named PAT tree or, in an earlier form, position tree) is a compressed trie containing all the suffixes of the given text as their keys and positions in the text as their values.\displaystyle S } , locating a substring if a certain number of mistakes are allowed, locating matches for a regular expression shape etc. He provided the first online-construction of suffix trees, now known as Ukkonen's algorithm, with working time that matched the then fastest algorithms.anbnanbn$. Weiner's Algorithm c finally uses compressed attempt to achieve linear overall storage size and run time. Farach's algorithm has become the basis for new algorithms for constructing both suffix trees and suffix arrays, for example, in external memory, compressed, succinct, etc.
/************************************************************************

    Suffix Tree. Ukkonen's algorithm using sibling lists  O(N).

    This code counts number of different substrings in the string.
    Based on problem I from here: http://codeforces.ru/gym/100133

************************************************************************/

#include <iostream>
#include <fstream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <cstring>
#include <cassert>
#include <utility>
#include <iomanip>

using namespace std;

#define root 1

const int MAXN = 105000;
const int inf = 1000 * 1000 * 1000;

struct node {
    int from, to, link;
    int child, bro;
};

int n, len, nk, pos;
string s;
vector <node> tree;
int active_e, active_node, active_len, needSL, rem;

int add_node(int from, int to) {
    nk++;
    node temp; 
    temp.from = from; temp.to = to; temp.link = 0;
    temp.child = 0; temp.bro = 0;
    tree.push_back(temp);
    return nk;
}

void st_init() {
    nk = -1;
    pos = -1;
    rem = active_e = active_len = needSL = 0;
    active_node = root;
    add_node(-1, -1);
    add_node(-1, -1);
}

void addSL(int v) {
    if (needSL) tree[needSL].link = v;
    needSL = v;
}

int find_edge(int v, int c) {
    v = tree[v].child;
    while (v) {
        if (s[tree[v].from] == c)
            return v;
        v = tree[v].bro;
    }
    return 0;
}

void insert_edge(int v, int to) {
    int temp = tree[v].child; 
    tree[v].child = to; 
    tree[to].bro = temp;
}

void change_edge(int v, int c, int to) {
    int next = tree[v].child;
    if (s[tree[next].from] == c) {
        tree[v].child = to;
        tree[to].bro = tree[next].bro;
        return;
    }
    v = next;
    while (v) {
        next = tree[v].bro;
        if (s[tree[next].from] == c) {
            tree[v].bro = to;
            tree[to].bro = tree[next].bro;
            return;
        }
        v = next;
    }
}

bool walk_down(int v) {
    int elen = tree[v].to - tree[v].from;
    if (tree[v].from + active_len >= tree[v].to) {
        active_node = v;
        active_len -= elen;
        active_e += elen;
        return true;
    }
    return false;
}

int active_edge() {
    return s[active_e];
}

void st_insert(int c) {
    pos++;
    needSL = 0; rem++; 
    while (rem) {
        if (active_len == 0) active_e = pos;
        int go = find_edge(active_node, active_edge());
        if (go == 0) {
            int leaf = add_node(pos, inf);
            insert_edge(active_node, leaf);
            addSL(active_node);
        }
        else {
            if (walk_down(go)) 
                continue;
            if (s[tree[go].from + active_len] == c) {
                active_len++;
                addSL(active_node);
                break;
            }
            int split = add_node(tree[go].from, tree[go].from + active_len);
            int leaf = add_node(pos, inf);

            change_edge(active_node, active_edge(), split);
            insert_edge(split, go);
            insert_edge(split, leaf);

            tree[go].from = tree[go].from + active_len;

            addSL(split);
        }
        rem--;
        if (active_node == root && active_len) {
            active_len--;
            active_e = pos - rem + 1;
        }
        else {
            if (tree[active_node].link) 
                active_node = tree[active_node].link;
            else
                active_node = root;
        }
    }
}

int count_diff() {
    int result = 0;
    for (int i = 2; i <= nk; i++)
        result += min(tree[i].to, n) - tree[i].from;
    return result;
}

int main() {
    freopen("substr.in","r",stdin);
    freopen("substr.out","w",stdout);

    getline(cin, s);
    n = (int) s.length();

    st_init();
    for (int i = 0; i < n; i++)
        st_insert(s[i]);

    printf("%d", count_diff());

    return 0;
}

LANGUAGE:

DARK MODE: