ordinary least squares regressor Algorithm
In statistics, ordinary least squares (OLS) is a type of linear least squares method for estimate the unknown parameters in a linear regression model. OLS chooses the parameters of a linear function of a set of explanatory variables by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values of the variable being detected) in the given dataset and those predicted by the linear function.
/**
* Program that gets the number of data samples and number of features per
* sample along with output per sample. It applies OLS regression to compute
* the regression output for additional test data samples.
**/
#include <iomanip>
#include <iostream>
#include <vector>
template <typename T>
std::ostream &operator<<(std::ostream &out,
std::vector<std::vector<T>> const &v) {
const int width = 10;
const char separator = ' ';
for (size_t row = 0; row < v.size(); row++) {
for (size_t col = 0; col < v[row].size(); col++)
out << std::left << std::setw(width) << std::setfill(separator)
<< v[row][col];
out << std::endl;
}
return out;
}
template <typename T>
std::ostream &operator<<(std::ostream &out, std::vector<T> const &v) {
const int width = 15;
const char separator = ' ';
for (size_t row = 0; row < v.size(); row++)
out << std::left << std::setw(width) << std::setfill(separator) << v[row];
return out;
}
template <typename T>
inline bool is_square(std::vector<std::vector<T>> const &A) {
// Assuming A is square matrix
size_t N = A.size();
for (size_t i = 0; i < N; i++)
if (A[i].size() != N)
return false;
return true;
}
/**
* matrix multiplication
**/
template <typename T>
std::vector<std::vector<T>> operator*(std::vector<std::vector<T>> const &A,
std::vector<std::vector<T>> const &B) {
// Number of rows in A
size_t N_A = A.size();
// Number of columns in B
size_t N_B = B[0].size();
std::vector<std::vector<T>> result(N_A);
if (A[0].size() != B.size()) {
std::cerr << "Number of columns in A != Number of rows in B ("
<< A[0].size() << ", " << B.size() << ")" << std::endl;
return result;
}
for (size_t row = 0; row < N_A; row++) {
std::vector<T> v(N_B);
for (size_t col = 0; col < N_B; col++) {
v[col] = static_cast<T>(0);
for (size_t j = 0; j < B.size(); j++)
v[col] += A[row][j] * B[j][col];
}
result[row] = v;
}
return result;
}
template <typename T>
std::vector<T> operator*(std::vector<std::vector<T>> const &A,
std::vector<T> const &B) {
// Number of rows in A
size_t N_A = A.size();
std::vector<T> result(N_A);
if (A[0].size() != B.size()) {
std::cerr << "Number of columns in A != Number of rows in B ("
<< A[0].size() << ", " << B.size() << ")" << std::endl;
return result;
}
for (size_t row = 0; row < N_A; row++) {
result[row] = static_cast<T>(0);
for (size_t j = 0; j < B.size(); j++)
result[row] += A[row][j] * B[j];
}
return result;
}
template <typename T>
std::vector<float> operator*(float const scalar, std::vector<T> const &A) {
// Number of rows in A
size_t N_A = A.size();
std::vector<float> result(N_A);
for (size_t row = 0; row < N_A; row++) {
result[row] += A[row] * static_cast<float>(scalar);
}
return result;
}
template <typename T>
std::vector<float> operator*(std::vector<T> const &A, float const scalar) {
// Number of rows in A
size_t N_A = A.size();
std::vector<float> result(N_A);
for (size_t row = 0; row < N_A; row++)
result[row] = A[row] * static_cast<float>(scalar);
return result;
}
template <typename T>
std::vector<float> operator/(std::vector<T> const &A, float const scalar) {
return (1.f / scalar) * A;
}
template <typename T>
std::vector<T> operator-(std::vector<T> const &A, std::vector<T> const &B) {
// Number of rows in A
size_t N = A.size();
std::vector<T> result(N);
if (B.size() != N) {
std::cerr << "Vector dimensions shouldbe identical!" << std::endl;
return A;
}
for (size_t row = 0; row < N; row++)
result[row] = A[row] - B[row];
return result;
}
template <typename T>
std::vector<T> operator+(std::vector<T> const &A, std::vector<T> const &B) {
// Number of rows in A
size_t N = A.size();
std::vector<T> result(N);
if (B.size() != N) {
std::cerr << "Vector dimensions shouldbe identical!" << std::endl;
return A;
}
for (size_t row = 0; row < N; row++)
result[row] = A[row] + B[row];
return result;
}
/**
* Get matrix inverse using Row-trasnformations
**/
template <typename T>
std::vector<std::vector<float>>
get_inverse(std::vector<std::vector<T>> const &A) {
// Assuming A is square matrix
size_t N = A.size();
std::vector<std::vector<float>> inverse(N);
for (size_t row = 0; row < N; row++) {
// preallocatae a resultant identity matrix
inverse[row] = std::vector<float>(N);
for (size_t col = 0; col < N; col++)
inverse[row][col] = (row == col) ? 1.f : 0.f;
}
if (!is_square(A)) {
std::cerr << "A must be a square matrix!" << std::endl;
return inverse;
}
// preallocatae a temporary matrix identical to A
std::vector<std::vector<float>> temp(N);
for (size_t row = 0; row < N; row++) {
std::vector<float> v(N);
for (size_t col = 0; col < N; col++)
v[col] = static_cast<float>(A[row][col]);
temp[row] = v;
}
// start transformations
for (size_t row = 0; row < N; row++) {
for (size_t row2 = row; row2 < N && temp[row][row] == 0; row2++) {
// this to ensure diagonal elements are not 0
temp[row] = temp[row] + temp[row2];
inverse[row] = inverse[row] + inverse[row2];
}
for (size_t col2 = row; col2 < N && temp[row][row] == 0; col2++) {
// this to further ensure diagonal elements are not 0
for (size_t row2 = 0; row2 < N; row2++) {
temp[row2][row] = temp[row2][row] + temp[row2][col2];
inverse[row2][row] = inverse[row2][row] + inverse[row2][col2];
}
}
if (temp[row][row] == 0) {
// Probably a low-rank matrix and hence singular
std::cerr << "Low-rank matrix, no inverse!" << std::endl;
return inverse;
}
// set diagonal to 1
float divisor = static_cast<float>(temp[row][row]);
temp[row] = temp[row] / divisor;
inverse[row] = inverse[row] / divisor;
// Row transformations
for (size_t row2 = 0; row2 < N; row2++) {
if (row2 == row)
continue;
float factor = temp[row2][row];
temp[row2] = temp[row2] - factor * temp[row];
inverse[row2] = inverse[row2] - factor * inverse[row];
}
}
return inverse;
}
/**
* matrix transpose
**/
template <typename T>
std::vector<std::vector<T>>
get_transpose(std::vector<std::vector<T>> const &A) {
std::vector<std::vector<T>> result(A[0].size());
for (size_t row = 0; row < A[0].size(); row++) {
std::vector<T> v(A.size());
for (size_t col = 0; col < A.size(); col++)
v[col] = A[col][row];
result[row] = v;
}
return result;
}
template <typename T>
std::vector<float> fit_OLS_regressor(std::vector<std::vector<T>> const &X,
std::vector<T> const &Y) {
// NxF
std::vector<std::vector<T>> X2 = X;
for (size_t i = 0; i < X2.size(); i++)
// add Y-intercept -> Nx(F+1)
X2[i].push_back(1);
// (F+1)xN
std::vector<std::vector<T>> Xt = get_transpose(X2);
// (F+1)x(F+1)
std::vector<std::vector<T>> tmp = get_inverse(Xt * X2);
// (F+1)xN
std::vector<std::vector<float>> out = tmp * Xt;
// cout << endl
// << "Projection matrix: " << X2 * out << endl;
// Fx1,1 -> (F+1)^th element is the independent constant
return out * Y;
}
/**
* Given data and OLS model coeffficients, predict
* regression estimates
**/
template <typename T>
std::vector<float> predict_OLS_regressor(std::vector<std::vector<T>> const &X,
std::vector<float> const &beta) {
std::vector<float> result(X.size());
for (size_t rows = 0; rows < X.size(); rows++) {
// -> start with constant term
result[rows] = beta[X[0].size()];
for (size_t cols = 0; cols < X[0].size(); cols++)
result[rows] += beta[cols] * X[rows][cols];
}
// Nx1
return result;
}
int main() {
size_t N, F;
std::cout << "Enter number of features: ";
// number of features = columns
std::cin >> F;
std::cout << "Enter number of samples: ";
// number of samples = rows
std::cin >> N;
std::vector<std::vector<float>> data(N);
std::vector<float> Y(N);
std::cout
<< "Enter training data. Per sample, provide features ad one output."
<< std::endl;
for (size_t rows = 0; rows < N; rows++) {
std::vector<float> v(F);
std::cout << "Sample# " << rows + 1 << ": ";
for (size_t cols = 0; cols < F; cols++)
// get the F features
std::cin >> v[cols];
data[rows] = v;
// get the corresponding output
std::cin >> Y[rows];
}
std::vector<float> beta = fit_OLS_regressor(data, Y);
std::cout << std::endl << std::endl << "beta:" << beta << std::endl;
size_t T;
std::cout << "Enter number of test samples: ";
// number of test sample inputs
std::cin >> T;
std::vector<std::vector<float>> data2(T);
// vector<float> Y2(T);
for (size_t rows = 0; rows < T; rows++) {
std::cout << "Sample# " << rows + 1 << ": ";
std::vector<float> v(F);
for (size_t cols = 0; cols < F; cols++)
std::cin >> v[cols];
data2[rows] = v;
}
std::vector<float> out = predict_OLS_regressor(data2, beta);
for (size_t rows = 0; rows < T; rows++)
std::cout << out[rows] << std::endl;
return 0;
}